3.273 \(\int \frac{(B \cos (c+d x)+C \cos ^2(c+d x)) \sec (c+d x)}{(a+a \cos (c+d x))^3} \, dx\)

Optimal. Leaf size=102 \[ \frac{(2 B+3 C) \sin (c+d x)}{15 d \left (a^3 \cos (c+d x)+a^3\right )}+\frac{(2 B+3 C) \sin (c+d x)}{15 a d (a \cos (c+d x)+a)^2}+\frac{(B-C) \sin (c+d x)}{5 d (a \cos (c+d x)+a)^3} \]

[Out]

((B - C)*Sin[c + d*x])/(5*d*(a + a*Cos[c + d*x])^3) + ((2*B + 3*C)*Sin[c + d*x])/(15*a*d*(a + a*Cos[c + d*x])^
2) + ((2*B + 3*C)*Sin[c + d*x])/(15*d*(a^3 + a^3*Cos[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.15406, antiderivative size = 102, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.105, Rules used = {3029, 2750, 2650, 2648} \[ \frac{(2 B+3 C) \sin (c+d x)}{15 d \left (a^3 \cos (c+d x)+a^3\right )}+\frac{(2 B+3 C) \sin (c+d x)}{15 a d (a \cos (c+d x)+a)^2}+\frac{(B-C) \sin (c+d x)}{5 d (a \cos (c+d x)+a)^3} \]

Antiderivative was successfully verified.

[In]

Int[((B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x])/(a + a*Cos[c + d*x])^3,x]

[Out]

((B - C)*Sin[c + d*x])/(5*d*(a + a*Cos[c + d*x])^3) + ((2*B + 3*C)*Sin[c + d*x])/(15*a*d*(a + a*Cos[c + d*x])^
2) + ((2*B + 3*C)*Sin[c + d*x])/(15*d*(a^3 + a^3*Cos[c + d*x]))

Rule 3029

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[1/b^2, Int[(a + b*Sin[e + f*x])
^(m + 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 2750

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((b
*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(a*f*(2*m + 1)), x] + Dist[(a*d*m + b*c*(m + 1))/(a*b*(2*m + 1)
), Int[(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 -
b^2, 0] && LtQ[m, -2^(-1)]

Rule 2650

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Cos[c + d*x]*(a + b*Sin[c + d*x])^n)/(a*
d*(2*n + 1)), x] + Dist[(n + 1)/(a*(2*n + 1)), Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d},
 x] && EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 2648

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> -Simp[Cos[c + d*x]/(d*(b + a*Sin[c + d*x])), x]
/; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin{align*} \int \frac{\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+a \cos (c+d x))^3} \, dx &=\int \frac{B+C \cos (c+d x)}{(a+a \cos (c+d x))^3} \, dx\\ &=\frac{(B-C) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}+\frac{(2 B+3 C) \int \frac{1}{(a+a \cos (c+d x))^2} \, dx}{5 a}\\ &=\frac{(B-C) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}+\frac{(2 B+3 C) \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}+\frac{(2 B+3 C) \int \frac{1}{a+a \cos (c+d x)} \, dx}{15 a^2}\\ &=\frac{(B-C) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}+\frac{(2 B+3 C) \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}+\frac{(2 B+3 C) \sin (c+d x)}{15 d \left (a^3+a^3 \cos (c+d x)\right )}\\ \end{align*}

Mathematica [A]  time = 0.258005, size = 96, normalized size = 0.94 \[ \frac{\sec \left (\frac{c}{2}\right ) \cos \left (\frac{1}{2} (c+d x)\right ) \left ((2 B+3 C) \left (5 \sin \left (c+\frac{3 d x}{2}\right )+\sin \left (2 c+\frac{5 d x}{2}\right )\right )+5 (4 B+3 C) \sin \left (\frac{d x}{2}\right )-15 C \sin \left (c+\frac{d x}{2}\right )\right )}{30 a^3 d (\cos (c+d x)+1)^3} \]

Antiderivative was successfully verified.

[In]

Integrate[((B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x])/(a + a*Cos[c + d*x])^3,x]

[Out]

(Cos[(c + d*x)/2]*Sec[c/2]*(5*(4*B + 3*C)*Sin[(d*x)/2] - 15*C*Sin[c + (d*x)/2] + (2*B + 3*C)*(5*Sin[c + (3*d*x
)/2] + Sin[2*c + (5*d*x)/2])))/(30*a^3*d*(1 + Cos[c + d*x])^3)

________________________________________________________________________________________

Maple [A]  time = 0.043, size = 64, normalized size = 0.6 \begin{align*}{\frac{1}{4\,d{a}^{3}} \left ({\frac{B-C}{5} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{5}}+{\frac{2\,B}{3} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3}}+B\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +C\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)/(a+a*cos(d*x+c))^3,x)

[Out]

1/4/d/a^3*(1/5*(B-C)*tan(1/2*d*x+1/2*c)^5+2/3*tan(1/2*d*x+1/2*c)^3*B+B*tan(1/2*d*x+1/2*c)+C*tan(1/2*d*x+1/2*c)
)

________________________________________________________________________________________

Maxima [A]  time = 1.36874, size = 155, normalized size = 1.52 \begin{align*} \frac{\frac{B{\left (\frac{15 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac{10 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac{3 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )}}{a^{3}} + \frac{3 \, C{\left (\frac{5 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{\sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )}}{a^{3}}}{60 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)/(a+a*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

1/60*(B*(15*sin(d*x + c)/(cos(d*x + c) + 1) + 10*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 3*sin(d*x + c)^5/(cos(d
*x + c) + 1)^5)/a^3 + 3*C*(5*sin(d*x + c)/(cos(d*x + c) + 1) - sin(d*x + c)^5/(cos(d*x + c) + 1)^5)/a^3)/d

________________________________________________________________________________________

Fricas [A]  time = 1.57908, size = 227, normalized size = 2.23 \begin{align*} \frac{{\left ({\left (2 \, B + 3 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \,{\left (2 \, B + 3 \, C\right )} \cos \left (d x + c\right ) + 7 \, B + 3 \, C\right )} \sin \left (d x + c\right )}{15 \,{\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)/(a+a*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

1/15*((2*B + 3*C)*cos(d*x + c)^2 + 3*(2*B + 3*C)*cos(d*x + c) + 7*B + 3*C)*sin(d*x + c)/(a^3*d*cos(d*x + c)^3
+ 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{B \cos{\left (c + d x \right )} \sec{\left (c + d x \right )}}{\cos ^{3}{\left (c + d x \right )} + 3 \cos ^{2}{\left (c + d x \right )} + 3 \cos{\left (c + d x \right )} + 1}\, dx + \int \frac{C \cos ^{2}{\left (c + d x \right )} \sec{\left (c + d x \right )}}{\cos ^{3}{\left (c + d x \right )} + 3 \cos ^{2}{\left (c + d x \right )} + 3 \cos{\left (c + d x \right )} + 1}\, dx}{a^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)/(a+a*cos(d*x+c))**3,x)

[Out]

(Integral(B*cos(c + d*x)*sec(c + d*x)/(cos(c + d*x)**3 + 3*cos(c + d*x)**2 + 3*cos(c + d*x) + 1), x) + Integra
l(C*cos(c + d*x)**2*sec(c + d*x)/(cos(c + d*x)**3 + 3*cos(c + d*x)**2 + 3*cos(c + d*x) + 1), x))/a**3

________________________________________________________________________________________

Giac [A]  time = 1.61338, size = 101, normalized size = 0.99 \begin{align*} \frac{3 \, B \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 3 \, C \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 10 \, B \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 15 \, B \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 15 \, C \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{60 \, a^{3} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)/(a+a*cos(d*x+c))^3,x, algorithm="giac")

[Out]

1/60*(3*B*tan(1/2*d*x + 1/2*c)^5 - 3*C*tan(1/2*d*x + 1/2*c)^5 + 10*B*tan(1/2*d*x + 1/2*c)^3 + 15*B*tan(1/2*d*x
 + 1/2*c) + 15*C*tan(1/2*d*x + 1/2*c))/(a^3*d)